韩斌

基本信息姓名韩斌
系室数学系
职称副教授
联系方式见学院黄页
电子邮件hanbin@dhu.edu.cn
研究方向偏微分方程及应用
个人简介研究流体力学中偏微分方程中的数学问题,包括解的存在性、唯一性、稳定性以及正则性等相关问题
学习经历起止年月学校专业学位/学历
2010.9 - 2013.9浙江大学基础数学博士
2007.9 - 2010.6宁波大学基础数学硕士
2003.9 - 2007.6江西师范大学数学与应用数学本科
工作经历起止年月单位职称/职务
2014.1 - 2016.1复旦大学博士后  
2016.4 - 2024.10杭州电子科技大学副教授
2018.9 - 2019.9纽约大学科朗数学研究所访问学者
2024.11 - 至今东华大学数学与统计学院副教授
教学成果课程名称
2024年4月 《线性代数(英文)》获批第三批省级线下一流课程
科研成果研究名称
1.国家自然科学基金青年基金,Navier-Stokes方程及相关模型一类大解的整体适定性研究, 11701131,2018.01.01-2020.12.31,结题
2.浙江省自然科学基金面上项目,变密度Navier-Stokes方程及相关模型解的正则性研究, LY21A010009,2021.01.01-2023.12.31,结题
3.浙江省自然科学基金青年基金,粘弹性流体在临L^p框架下的整体适定性理论, LQ17A010007,2017.01.01-2019.12.31,结题
4.国家自然科学基金天元基金, 旋转流体的整体适定性理论,11626075, 2017.01.01-2019.12.31, 结题
代表性论文&科研
Globalwell-posednesstonon-isothermalporousmedia system, Dynamics of PDE, 22(2),151-169,2025. (With Z. Zhang)
Incompressible linmit for the compressible micropolar fluids in critical space, J. Math. Phy. 66 (2025), 1-18. (With Dan Wu)
Incompressible  limit for the compressible viscoelastic fluids in critical space, Advances in Nonlinear Analysis,2025;14:20240062. (With Dan Wu)
On the global well-posedness for the compressible Hall-MHD system, J. Math. Phys. 65, 011504 (2024). (With K. Hu and N. Lai).
Global existence of strong solutions for a non-isothermal ideal gas system, Acta Mathematica Scientia, 2024, 44B (1): 1–24. (With A. Tarfulea and N. Lai)
Global strong solutions to the anisotropic three-dimensional incompressible magnetohydrodynamic system, Math. Meth. Appl. Sci. 2024;47:10214–10234. (with Na Zhao).
Regularity criteria for the three-dimensional axially symmetric non-resistive incompressible magnetohydrodynamic system, Applicable Analysis, 1–14.2024.2381208.(with C. Yang and Na Zhao)
The Global strong solutions of the 3D incompressible Hall-MHD system with variable density, Mathematical Modeling and Analysis, 2024.(with Shu An)
A Generalized Blow up Criteria with One Component of Velocity for 3D Incompressible MHD System, Chin. Ann. Math. Ser. B,  45(2), 2024, 253-264. (with Xi Xiong)
Dispersive effect and global well-posedness of the compressible viscoelastic fluids,  Journal of Differential Equations,269 (2020) 9254-9296.( With R. Zi)
On the critical blow-up criterion with one velocity component for 3D incompressible MHD system. Nonlinear Analysis: Real World Applications,2020, 52, 10300. (with Na Zhao).
Global well-posedness for the 3D primitive equations in anisotropic framework, Journal of Mathematical Analysis and Applications, 2020, 484: 1-22(with D. Fang) .
Sharp One Component Regularity for Navier-Stokes. Arch. Rational Mech. Anal. 2019, 231(2), 939-970. (with Zhen Lei, Dong Li and Na Zhao).
Spreading of the free boundary of relativistic Euler equations in a vacuum. Mathematical Research Letters, 2018, 25(6), 2017-2033. (with C. Wei).
Global regularity to the Navier-Stokes equations for a class of large initial data. Mathematical Modelling and Analysis, 2018,23(2), 262-286. (with Y. Chen).
Global well-posedness for the inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete and Continuous Dynamic System,2016, 36(12).
Global strong solution for the density dependent incompressible viscoelastic fluids in the critical L^p framework. Nonlinear Analysis-TMA,2016,132, 337-358.
Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle, Kinetic and Related Models,2016,9(4), 767-776.
Global solution for the generalized anisotropic Navier-Stokes equations with large data. Mathematical Modelling and Analysis, 2015, 20(2), 205-231.
Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure and Applied Analysis, 2015, 14(2), 609-622.
Global existence in critical spaces for density-dependent incompressible viscoelastic fluids. Acta Applicandae Mathematicae, 2014,130, 51-80. (with D. Fang and T. Zhang)
Global well-posedness result for density-dependent incompressible viscous fluid in R^2 with linearly growing initial velocity. Mathematical Methods in the Applied Sciences, 2013 36(8), 921-935. (with D. Fang and T. Zhang).