
基本信息 | 姓名 | 韩斌 | ||
---|---|---|---|---|
系室 | 数学系 | |||
职称 | 副教授 | |||
联系方式 | 见学院黄页 | |||
电子邮件 | hanbin@dhu.edu.cn | |||
研究方向 | 偏微分方程及应用 | |||
个人简介 | 研究流体力学中偏微分方程中的数学问题,包括解的存在性、唯一性、稳定性以及正则性等相关问题 | |||
学习经历 | 起止年月 | 学校 | 专业 | 学位/学历 |
2010.9 - 2013.9 | 浙江大学 | 基础数学 | 博士 | |
2007.9 - 2010.6 | 宁波大学 | 基础数学 | 硕士 | |
2003.9 - 2007.6 | 江西师范大学 | 数学与应用数学 | 本科 | |
工作经历 | 起止年月 | 单位 | 职称/职务 | |
2014.1 - 2016.1 | 复旦大学 | 博士后 | ||
2016.4 - 2024.10 | 杭州电子科技大学 | 副教授 | ||
2018.9 - 2019.9 | 纽约大学科朗数学研究所 | 访问学者 | ||
2024.11 - 至今 | 东华大学数学与统计学院 | 副教授 | ||
教学成果 | 课程名称 | |||
2024年4月 《线性代数(英文)》获批第三批省级线下一流课程 | ||||
科研成果 | 研究名称 | |||
1.国家自然科学基金青年基金,Navier-Stokes方程及相关模型一类大解的整体适定性研究, 11701131,2018.01.01-2020.12.31,结题 2.浙江省自然科学基金面上项目,变密度Navier-Stokes方程及相关模型解的正则性研究, LY21A010009,2021.01.01-2023.12.31,结题 3.浙江省自然科学基金青年基金,粘弹性流体在临L^p框架下的整体适定性理论, LQ17A010007,2017.01.01-2019.12.31,结题 4.国家自然科学基金天元基金, 旋转流体的整体适定性理论,11626075, 2017.01.01-2019.12.31, 结题 |
代表性论文&科研 |
---|
Globalwell-posednesstonon-isothermalporousmedia system, Dynamics of PDE, 22(2),151-169,2025. (With Z. Zhang) |
Incompressible linmit for the compressible micropolar fluids in critical space, J. Math. Phy. 66 (2025), 1-18. (With Dan Wu) |
Incompressible limit for the compressible viscoelastic fluids in critical space, Advances in Nonlinear Analysis,2025;14:20240062. (With Dan Wu) |
On the global well-posedness for the compressible Hall-MHD system, J. Math. Phys. 65, 011504 (2024). (With K. Hu and N. Lai). |
Global existence of strong solutions for a non-isothermal ideal gas system, Acta Mathematica Scientia, 2024, 44B (1): 1–24. (With A. Tarfulea and N. Lai) |
Global strong solutions to the anisotropic three-dimensional incompressible magnetohydrodynamic system, Math. Meth. Appl. Sci. 2024;47:10214–10234. (with Na Zhao). |
Regularity criteria for the three-dimensional axially symmetric non-resistive incompressible magnetohydrodynamic system, Applicable Analysis, 1–14.2024.2381208.(with C. Yang and Na Zhao) |
The Global strong solutions of the 3D incompressible Hall-MHD system with variable density, Mathematical Modeling and Analysis, 2024.(with Shu An) |
A Generalized Blow up Criteria with One Component of Velocity for 3D Incompressible MHD System, Chin. Ann. Math. Ser. B, 45(2), 2024, 253-264. (with Xi Xiong) |
Dispersive effect and global well-posedness of the compressible viscoelastic fluids, Journal of Differential Equations,269 (2020) 9254-9296.( With R. Zi) |
On the critical blow-up criterion with one velocity component for 3D incompressible MHD system. Nonlinear Analysis: Real World Applications,2020, 52, 10300. (with Na Zhao). |
Global well-posedness for the 3D primitive equations in anisotropic framework, Journal of Mathematical Analysis and Applications, 2020, 484: 1-22(with D. Fang) . |
Sharp One Component Regularity for Navier-Stokes. Arch. Rational Mech. Anal. 2019, 231(2), 939-970. (with Zhen Lei, Dong Li and Na Zhao). |
Spreading of the free boundary of relativistic Euler equations in a vacuum. Mathematical Research Letters, 2018, 25(6), 2017-2033. (with C. Wei). |
Global regularity to the Navier-Stokes equations for a class of large initial data. Mathematical Modelling and Analysis, 2018,23(2), 262-286. (with Y. Chen). |
Global well-posedness for the inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete and Continuous Dynamic System,2016, 36(12). |
Global strong solution for the density dependent incompressible viscoelastic fluids in the critical L^p framework. Nonlinear Analysis-TMA,2016,132, 337-358. |
Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle, Kinetic and Related Models,2016,9(4), 767-776. |
Global solution for the generalized anisotropic Navier-Stokes equations with large data. Mathematical Modelling and Analysis, 2015, 20(2), 205-231. |
Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure and Applied Analysis, 2015, 14(2), 609-622. |
Global existence in critical spaces for density-dependent incompressible viscoelastic fluids. Acta Applicandae Mathematicae, 2014,130, 51-80. (with D. Fang and T. Zhang) |
Global well-posedness result for density-dependent incompressible viscous fluid in R^2 with linearly growing initial velocity. Mathematical Methods in the Applied Sciences, 2013 36(8), 921-935. (with D. Fang and T. Zhang). |